Frequently asked questions

set.seed(2021)
library(ggtrace)

Is ggtrace() safe?

ggtrace() is essentially just a wrapper around base::trace() designed to make it easy and safe to programmatically trace/untrace functions and methods.

So the short answer is that ggtrace() is at least as safe as trace(). But how safe is trace()?

The beauty of trace() is that the modified function being traced masks over the original function without overwriting it. This allows for non-destructive modifications to the execution behavior.

In this simple example, we add a trace to replace() which multiples the value of x by 10 as the function enters the last step.

body(replace)
#> {
#>     x[list] <- values
#>     x
#> }

replace(1:5, 3, 30)
#> [1]  1  2 30  4  5

as.list(body(replace))
#> [[1]]
#> `{`
#> 
#> [[2]]
#> x[list] <- values
#> 
#> [[3]]
#> x

trace(replace, tracer = quote(x <- x * 10), at = 3)
#> Tracing function "replace" in package "base"
#> [1] "replace"

The traced function looks strange and runs with a different behavior

class(replace)
#> [1] "functionWithTrace"
#> attr(,"package")
#> [1] "methods"

body(replace)
#> {
#>     x[list] <- values
#>     {
#>         .doTrace(x <- x * 10, "step 3")
#>         x
#>     }
#> }

replace(1:5, 3, 30)
#> Tracing replace(1:5, 3, 30) step 3
#> [1]  10  20 300  40  50

But again, this is non-destructive. The original function body is safely stored away in the "original" attribute of the traced function

attr(replace, "original")
#> function (x, list, values) 
#> {
#>     x[list] <- values
#>     x
#> }
#> <bytecode: 0x556c68bf49f0>
#> <environment: namespace:base>

The original function can be recovered by removing the trace with a call to untrace()

untrace(replace)
#> Untracing function "replace" in package "base"

body(replace)
#> {
#>     x[list] <- values
#>     x
#> }

replace(1:5, 3, 30)
#> [1]  1  2 30  4  5

Beyond this, {ggtrace} also offers some extra built-in safety measures:

  • Cleans up after itself by untracing on exit (the default behavior with once = TRUE)
  • Always untraces before tracing, which prevents nested traces from being created
  • Provides ample messages about whethere there is an existing trace (which you can also check with is_traced())
  • Exits as early as possible if the method expression is ill-formed with more informative error messages that you can actually act on
  • Prevents traces from being created on functions that aren’t bound to a variable in some way (i.e., prevents you from creating traces that you can’t trigger)

However, some expression you pass to ggtrace() for delayed evaluation are not without consequences. You need to be careful about running functions that have side effects and making assignments to environments (ex: self$method <- ... will modify in place). But this isn’t a problem of {ggtrace} - they follow from the general rules of reference semantics in R.

What can you ggtrace()?

Functions

{base} functions

sample(letters, 5)
#> [1] "g" "f" "n" "z" "l"
ggtrace(sample, 1, quote(x <- LETTERS), verbose = FALSE)
#> `sample` now being traced.
sample(letters, 5)
#> Triggering trace on `sample`
#> Untracing `sample` on exit.
#> [1] "T" "F" "Y" "X" "N"
sample(letters, 5)
#> [1] "e" "o" "g" "i" "l"

Imported functions

ggtrace(ggplot2::mean_se, 1, quote(cat("Running...\n")), verbose = FALSE)
#> `ggplot2::mean_se` now being traced.
ggplot2::mean_se(mtcars$mpg)
#> Triggering trace on `ggplot2::mean_se`
#> Running...
#> Untracing `ggplot2::mean_se` on exit.
#>          y    ymin     ymax
#> 1 20.09062 19.0252 21.15605

Custom functions

please_return_number <- function() {
  result <- runif(1)
  result
}
please_return_number()
#> [1] 0.5456977

ggtrace(please_return_number, -1, quote(result <- "no"), verbose = FALSE)
#> `please_return_number` now being traced.
please_return_number()
#> Triggering trace on `please_return_number`
#> Untracing `please_return_number` on exit.
#> [1] "no"

ggproto methods

library(ggplot2)
boxplot_plot <- ggplot(mpg, aes(drv, hwy)) +
  geom_boxplot()

boxplot_plot

Default tracing behavior with untracing on exit

ggtrace(StatBoxplot$compute_group, -1, verbose = FALSE)
#> `StatBoxplot$compute_group` now being traced.

# Plot not printed to save space
boxplot_plot
#> Triggering trace on `StatBoxplot$compute_group`
#> Untracing `StatBoxplot$compute_group` on exit.

last_ggtrace()
#> $`[Step 19]> flip_data(df, flipped_aes)`
#>   ymin lower middle upper ymax outliers notchupper notchlower x width
#> 1   12    17     18    22   28            18.77841   17.22159 1  0.75
#>   relvarwidth flipped_aes
#> 1    10.14889       FALSE

Persistent trace with once = FALSE and explicit untracing with gguntrace()

global_ggtrace_state()
#> [1] FALSE
global_ggtrace_state(TRUE)
#> Global tracedump activated.
clear_global_ggtrace()
#> Global tracedump cleared.

ggtrace(StatBoxplot$compute_group, -1, once = FALSE, verbose = FALSE)
#> `StatBoxplot$compute_group` now being traced.
#> Creating a persistent trace. Remember to `gguntrace(StatBoxplot$compute_group)`!

# Plot not printed to save space
boxplot_plot
#> Triggering persistent trace on `StatBoxplot$compute_group`
#> Triggering persistent trace on `StatBoxplot$compute_group`
#> Triggering persistent trace on `StatBoxplot$compute_group`

gguntrace(StatBoxplot$compute_group)
#> `StatBoxplot$compute_group` no longer being traced.

global_ggtrace()
#> $`StatBoxplot$compute_group-0x556c6ad4d958`
#> $`StatBoxplot$compute_group-0x556c6ad4d958`$`[Step 19]> flip_data(df, flipped_aes)`
#>   ymin lower middle upper ymax outliers notchupper notchlower x width
#> 1   12    17     18    22   28            18.77841   17.22159 1  0.75
#>   relvarwidth flipped_aes
#> 1    10.14889       FALSE
#> 
#> 
#> $`StatBoxplot$compute_group-0x556c6bef2dd0`
#> $`StatBoxplot$compute_group-0x556c6bef2dd0`$`[Step 19]> flip_data(df, flipped_aes)`
#>   ymin lower middle upper ymax                                   outliers
#> 1   22    26     28    29   33 17, 21, 34, 36, 36, 35, 37, 35, 44, 44, 41
#>   notchupper notchlower x width relvarwidth flipped_aes
#> 1   28.46039   27.53961 2  0.75    10.29563       FALSE
#> 
#> 
#> $`StatBoxplot$compute_group-0x556c6c7e4700`
#> $`StatBoxplot$compute_group-0x556c6c7e4700`$`[Step 19]> flip_data(df, flipped_aes)`
#>   ymin lower middle upper ymax outliers notchupper notchlower x width
#> 1   15    17     21    24   26              23.212     18.788 3  0.75
#>   relvarwidth flipped_aes
#> 1           5       FALSE

global_ggtrace_state(FALSE)
#> Global tracedump deactivated.

S3/S4 generics

The exported generic function ggplot_build() from {ggplot2} is itself not very meaningful, but the unexported method for the <ggplot> class ggplot_build.ggplot() contains the actual data transformation pipeline.

body(ggplot_build)
#> {
#>     attach_plot_env(plot$plot_env)
#>     UseMethod("ggplot_build")
#> }

attr(utils::methods("ggplot_build"), "info")
#>                     visible                                 from      generic
#> ggplot_build.ggplot   FALSE registered S3method for ggplot_build ggplot_build
#>                      isS4
#> ggplot_build.ggplot FALSE

You can trace the ggplot_build() method defined for <ggplot> in the same way as functions

ggtrace(ggplot2:::ggplot_build.ggplot, -1, verbose = FALSE)
#> `ggplot2:::ggplot_build.ggplot` now being traced.

boxplot_plot
#> Triggering trace on `ggplot2:::ggplot_build.ggplot`
#> Untracing `ggplot2:::ggplot_build.ggplot` on exit.

last_ggtrace()[[1]]$data[[1]]
#>   ymin lower middle upper ymax                                   outliers
#> 1   12    17     18    22   28                                           
#> 2   22    26     28    29   33 17, 21, 34, 36, 36, 35, 37, 35, 44, 44, 41
#> 3   15    17     21    24   26                                           
#>   notchupper notchlower x flipped_aes PANEL group ymin_final ymax_final  xmin
#> 1   18.77841   17.22159 1       FALSE     1     1         12         28 0.625
#> 2   28.46039   27.53961 2       FALSE     1     2         17         44 1.625
#> 3   23.21200   18.78800 3       FALSE     1     3         15         26 2.625
#>    xmax xid newx new_width weight colour  fill alpha shape linetype linewidth
#> 1 1.375   1    1      0.75      1 grey20 white    NA    19    solid       0.5
#> 2 2.375   2    2      0.75      1 grey20 white    NA    19    solid       0.5
#> 3 3.375   3    3      0.75      1 grey20 white    NA    19    solid       0.5

identical(last_ggtrace()[[1]]$data[[1]], layer_data(boxplot_plot, 1))
#> [1] TRUE

R6 methods

Adopted from Advanced R Ch. 14.2

library(R6)
Accumulator <- R6Class("Accumulator", list(
  sum = 0,
  add = function(x = 1) {
    self$sum <- self$sum + x 
    invisible(self)
  })
)
x <- Accumulator$new()
x$add(1)
x$sum
#> [1] 1
ggtrace(
  method = x$add,
  trace_steps = c(1, -1),
  trace_exprs = list(
    before = quote(self$sum),
    after = quote(self$sum)
  ),
  once = FALSE,
  verbose = FALSE
)
#> `x$add` now being traced.
#> Creating a persistent trace. Remember to `gguntrace(x$add)`!
x$add(10)
#> Triggering persistent trace on `x$add`
last_ggtrace()
#> $before
#> [1] 1
#> 
#> $after
#> [1] 11
x$add(100)
#> Triggering persistent trace on `x$add`
last_ggtrace()
#> $before
#> [1] 11
#> 
#> $after
#> [1] 111
gguntrace(x$add)
#> `x$add` no longer being traced.
x$add(1000)
x$sum
#> [1] 1111

What can’t you ggtrace()?

  • Non-functions (ex: constants, object properties). But you can still inspect the values for these with ggbody()
  • Functions not defined in an environment (ex: you can’t define a function to trace on-the-spot inside ggtrace())
  • Limited support for closures (the LHS of the $ must itself be an environment where the function can be searched for)

How can I save a modified ggplot?

When you trace the internals of ggplot, that doesn’t directly modify the instructions for plotting. Instead, it changes how certain components behave when they are executed.

This means that you will not get a different ggplot with the following code if original_plot is being traced with modifications, since original_plot is not being executed here.

original_plot <- ggplot(mtcars, aes(hp, mpg)) + geom_point()

ggtrace(ggplot2:::ggplot_build.ggplot, -1, quote(data[[1]]$colour <- "red"), verbose = FALSE)
#> `ggplot2:::ggplot_build.ggplot` now being traced.

modified_plot <- original_plot

It looks like it worked when you first print it…

modified_plot
#> Triggering trace on `ggplot2:::ggplot_build.ggplot`
#> Untracing `ggplot2:::ggplot_build.ggplot` on exit.

But the variable modified_pot doesn’t hold modified code for generating the plot. Instead, it just happened to trigger the trace on ggplot_build.ggplot(). So the next time it runs, it’s ran with the normal behavior of original_plot.

modified_plot

To capture the actual figure generated by a ggplot, you can use ggplotGrob(), which returns the Graphical object representation of the plot:

ggtrace(ggplot2:::ggplot_build.ggplot, -1, quote(data[[1]]$colour <- "red"), verbose = FALSE)
#> `ggplot2:::ggplot_build.ggplot` now being traced.

modified_plot <- ggplotGrob(original_plot)
#> Triggering trace on `ggplot2:::ggplot_build.ggplot`
#> Untracing `ggplot2:::ggplot_build.ggplot` on exit.

modified_plot
#> TableGrob (16 x 13) "layout": 22 grobs
#>     z         cells             name
#> 1   0 ( 1-16, 1-13)       background
#> 2   5 ( 8- 8, 6- 6)           spacer
#> 3   7 ( 9- 9, 6- 6)           axis-l
#> 4   3 (10-10, 6- 6)           spacer
#> 5   6 ( 8- 8, 7- 7)           axis-t
#> 6   1 ( 9- 9, 7- 7)            panel
#> 7   9 (10-10, 7- 7)           axis-b
#> 8   4 ( 8- 8, 8- 8)           spacer
#> 9   8 ( 9- 9, 8- 8)           axis-r
#> 10  2 (10-10, 8- 8)           spacer
#> 11 10 ( 7- 7, 7- 7)           xlab-t
#> 12 11 (11-11, 7- 7)           xlab-b
#> 13 12 ( 9- 9, 5- 5)           ylab-l
#> 14 13 ( 9- 9, 9- 9)           ylab-r
#> 15 14 ( 9- 9,11-11)  guide-box-right
#> 16 15 ( 9- 9, 3- 3)   guide-box-left
#> 17 16 (13-13, 7- 7) guide-box-bottom
#> 18 17 ( 5- 5, 7- 7)    guide-box-top
#> 19 18 ( 9- 9, 7- 7) guide-box-inside
#> 20 19 ( 4- 4, 7- 7)         subtitle
#> 21 20 ( 3- 3, 7- 7)            title
#> 22 21 (14-14, 7- 7)          caption
#>                                             grob
#> 1                rect[plot.background..rect.350]
#> 2                                 zeroGrob[NULL]
#> 3            absoluteGrob[GRID.absoluteGrob.339]
#> 4                                 zeroGrob[NULL]
#> 5                                 zeroGrob[NULL]
#> 6                       gTree[panel-1.gTree.331]
#> 7            absoluteGrob[GRID.absoluteGrob.335]
#> 8                                 zeroGrob[NULL]
#> 9                                 zeroGrob[NULL]
#> 10                                zeroGrob[NULL]
#> 11                                zeroGrob[NULL]
#> 12 titleGrob[axis.title.x.bottom..titleGrob.342]
#> 13   titleGrob[axis.title.y.left..titleGrob.345]
#> 14                                zeroGrob[NULL]
#> 15                                zeroGrob[NULL]
#> 16                                zeroGrob[NULL]
#> 17                                zeroGrob[NULL]
#> 18                                zeroGrob[NULL]
#> 19                                zeroGrob[NULL]
#> 20         zeroGrob[plot.subtitle..zeroGrob.347]
#> 21            zeroGrob[plot.title..zeroGrob.346]
#> 22          zeroGrob[plot.caption..zeroGrob.348]

What you get is an object of class <gtable>, which you can draw to your device like any other grob:

class(modified_plot)
#> [1] "gtable" "gTree"  "grob"   "gDesc"

library(grid)
grid.newpage()
grid.draw(modified_plot)

You can also use ggsave() to render a <gtable> to an image:

# Not ran 
ggsave(filename = "modified_plot.png", plot = modified_plot, ...)

Still, modified_plot is only the graphical representation of the plot and not itself a ggplot object so you can’t keep adding layers to it. So grobs are more limiting in that sense.

But it’s not totally limiting like a raster image of a figure. For example, {patchwork} has patchwork::wrap_ggplot_grob() which allows a <gtable> to be properly aligned to other ggplots.

library(patchwork)
original_plot_titled <- original_plot + ggtitle("original plot")

# Panels get aligned since `modified_plot` contains info about that
original_plot_titled + wrap_ggplot_grob(modified_plot)