
Package: ggtrace (via r-universe)
October 18, 2024

Type Package

Title Programmatically explore, debug, and manipulate ggplot internals

Version 0.7.3

Description Programmatically explore, debug, and manipulate ggplot
internals. Package ggtrace offers a low-level interface that
extends base R capabilities of trace, as well as a family of
workflow functions that make interactions with ggplot internals
more accessible.

URL https://yjunechoe.github.io/ggtrace,

https://github.com/yjunechoe/ggtrace

BugReports https://github.com/yjunechoe/ggtrace/issues

Depends R (>= 3.3.0)

License MIT + file LICENSE

Encoding UTF-8

Roxygen list(markdown = TRUE)

RoxygenNote 7.3.2

Collate 'utils.R' 'helpers.R' 'get_method.R' 'tracedump.R' 'ggedit.R'
'gguntrace.R' 'ggtrace.R' 'one-offs.R' 'with_ggtrace.R'
'topic-tracing-context.R' 'workflows-utils.R'
'workflows-inspect.R' 'workflows-capture.R'
'workflows-highjack.R' 'aliases.R' 'last-errorcontext.R'
'sublayer-data.R' 'zzz.R'

Imports cli, rlang (>= 1.0.0)

Suggests ggplot2 (>= 3.4.0), dplyr, grid, ggforce, ggh4x, patchwork,
R6, rmarkdown, knitr, pkgdown, testthat (>= 3.0.0)

VignetteBuilder knitr

Config/testthat/edition 3

Repository https://yjunechoe.r-universe.dev

RemoteUrl https://github.com/yjunechoe/ggtrace

RemoteRef HEAD

RemoteSha 5b73d39698b932137e4bc039026e05e4c261aeba

1

https://yjunechoe.github.io/ggtrace
https://github.com/yjunechoe/ggtrace
https://github.com/yjunechoe/ggtrace/issues

2 get_method

Contents
get_method . 2
ggdebug . 5
ggedit . 6
ggtrace . 7
ggtrace_capture_env . 11
ggtrace_capture_fn . 13
ggtrace_highjack_args . 15
ggtrace_highjack_return . 17
ggtrace_inspect_args . 19
ggtrace_inspect_n . 21
ggtrace_inspect_on_error . 22
ggtrace_inspect_return . 23
ggtrace_inspect_vars . 25
ggtrace_inspect_which . 27
gguntrace . 29
is_traced . 30
last_layer_errorcontext . 31
with_ggtrace . 32

Index 36

get_method Get information about ggproto methods

Description

Get information about ggproto methods

Usage

get_method(method, inherit = FALSE)

get_method_inheritance(obj, trim_overriden = TRUE)

ggbody(method, inherit = FALSE, as.list = TRUE)

ggformals(method, inherit = FALSE)

Arguments

method A function or a ggproto method. The ggproto method may be specified using
any of the following forms:

• ggproto$method

• namespace::ggproto$method

• namespace:::ggproto$method

get_method 3

inherit Whether the method should be searched from its closest parent. Defaults to
FALSE. If TRUE, returns the parent’s method and the corresponding ggbody()
code as a message.

obj A ggproto object

trim_overriden Whether get_method_inheritance should recursively hide methods defined
by a parent.

as.list Whether ggbody() should return the body of the method as a list. Defaults to
TRUE.

Details

• get_method() returns the method.

• get_method_inheritance() lists available methods from self and parent ggprotos.

• ggbody() returns the body of the method.

• ggformals() returns the formals of the method.

Value

A list

Gotchas

• If a method is being traced via ggtrace() or ggedit(), get_method() will return the current
modified state of the method. As of v0.3.5, calling get_method() on a method that has a trace
on it will return a warning to emphasize this fact.

• When using inherit = TRUE, make sure that all ggproto objects from class(ggproto) are
available (by loading the packages where they are defined, for example). Under the hood,
get_method() loops through the parents to search for the method, so it needs to be able to
evaluate each element of class(ggproto) as an object.

Note

get_method() calls get("method", ggproto) under the hood. The get("method", ggproto)
syntax is the long form of ggproto$method which retrieves the actual function body. This is a
subtle but important difference for inspecting ggproto methods.

• For example, this works: debugonce(get("compute_group", StatCount))

• But this fails to insert a break point: debugonce(StatCount$compute_group)

get_method() was designed so that you do not have to worry about this distinction.

Examples

library(ggplot2)

Uninformative
StatCount$compute_group
formals(StatCount$compute_group)

4 get_method

body(StatCount$compute_group)

Errors
get(StatCount$compute_group)

Informative
get_method(StatCount$compute_group)
ggformals(StatCount$compute_group) # formals(get_method(StatCount$compute_group))
ggbody(StatCount$compute_group) # body(get_method(StatCount$compute_group))

Works for ggproto in extension packages

ggbody(ggforce::StatDelaunaySegment$compute_group)

library(ggforce)
ggbody(StatBezier$compute_panel)

`inherit = TRUE` will return the method from the closest parent

ERRORS:
get_method(StatBoxplot$compute_panel)
ggbody(StatBoxplot$compute_panel)
ggformals(StatBoxplot$compute_panel)
ggbody(StatBoxplot$compute_panel, inherit = TRUE)
ggbody(Stat$compute_panel)

Navigating complex inheritance
class(GeomArcBar)
invisible(ggbody(GeomArcBar$default_aes, inherit = TRUE)) # self
invisible(ggbody(GeomArcBar$draw_panel, inherit = TRUE)) # parent
invisible(ggbody(GeomArcBar$draw_key, inherit = TRUE)) # grandparent
invisible(ggbody(GeomArcBar$draw_group, inherit = TRUE)) # top-level

Getting information about method inheritance all at once
- default `trim_overriden = TRUE` hides redundant methods defined in parent
get_method_inheritance(GeomArcBar, trim_overriden = TRUE)

Works for custom ggproto
- Example from {ggplot2} "Extending ggplot2" vignette
StatDensityCommon <- ggproto("StatDensityCommon", Stat,

required_aes = "x",

setup_params = function(data, params) {
if (!is.null(params$bandwidth))

return(params)

xs <- split(data$x, data$group)
bws <- vapply(xs, bw.nrd0, numeric(1))
bw <- mean(bws)
message("Picking bandwidth of ", signif(bw, 3))

params$bandwidth <- bw
params

ggdebug 5

},

compute_group = function(data, scales, bandwidth = 1) {
d <- density(data$x, bw = bandwidth)
data.frame(x = d$x, y = d$y)

}
)

as.list(body(get("compute_group", StatDensityCommon)))

ggbody(StatDensityCommon$compute_group)

As of v.0.4.0, ggbody works for functions as well
ggbody(sample)
ggtrace(sample, 1)
invisible(ggbody(sample))
is_traced(sample)
gguntrace(sample)

ggdebug Debug a ggproto method

Description

Debug a ggproto method

Usage

ggdebug(method, ...)

ggdebugonce(method, ...)

ggundebug(method, ...)

Arguments

method A function or a ggproto method. The ggproto method may be specified using
any of the following forms:

• ggproto$method

• namespace::ggproto$method

• namespace:::ggproto$method

... Ignored. Designed for the ease of calling this function by modifying the call to
an earlier {ggtrace} function in interactive contexts.

6 ggedit

ggedit Interactively edit a masking copy of the source code

Description

Interactively edit a masking copy of the source code

Usage

ggedit(method, remove_trace = FALSE, ...)

Arguments

method A function or a ggproto method. The ggproto method may be specified using
any of the following forms:

• ggproto$method

• namespace::ggproto$method

• namespace:::ggproto$method

remove_trace Whether to edit from a clean slate. Defaults to FALSE.

... Unused, for extensibility.

Details

Like base::trace(), the edit is in effect until gguntrace() is called. Changes with ggedit()
are cumulative, so ggedit() will inform you via a warning if you’re making an edit on top of
an existing edit. Call gguntrace() on the object first if you’d like to edit the method’s original
unaltered source code.

Only works in interactive contexts.

Gotchas

• Calling ggtrace() on an method that that has changes from ggedit() will remove the
changes from ggedit(). It is possible to combine both features, but disabled in the package
to keep the API consistent. It is against the philosophy of {ggtrace} to mix programmatic
and interactive workflows.

See Also

gguntrace(), is_traced()

ggtrace 7

Examples

Not run:

jitter_plot <- ggplot(diamonds[1:1000,], aes(cut, depth)) +
geom_point(position = position_jitter(width = 0.2, seed = 2021))

Interactively modify the method's source code in text editor
ggedit(PositionJitter$compute_layer)

Check the edited code
ggbody(PositionJitter$compute_layer)

Execute method with edit
jitter_plot

Untrace
gguntrace(PositionJitter$compute_layer)

Edit is removed in the next call
jitter_plot

End(Not run)

ggtrace Insert traces for delayed evaluation

Description

Insert traces for delayed evaluation

Usage

ggtrace(
method,
trace_steps,
trace_exprs,
once = TRUE,
use_names = TRUE,
...,
print_output = TRUE,
verbose = FALSE

)

Arguments

method A function or a ggproto method. The ggproto method may be specified using
any of the following forms:

8 ggtrace

• ggproto$method

• namespace::ggproto$method

• namespace:::ggproto$method

trace_steps A sorted numeric vector of positions in the method’s body to trace. Negative
indices reference steps from the last, where -1 references the last step in the
body. Special value "all" traces all steps of the method body.

trace_exprs A list of expressions to evaluate at each position specified in trace_steps. If a
single expression is provided, it is recycled to match the length of trace_steps.
To simply run a step and return its output, you can use the ~step keyword. If
the step is an assign expression, the value of the assigned variable is returned. If
trace_exprs is not provided, ggtrace() is called with ~step by default.

once Whether to untrace() the method on exit. If FALSE, creates a persistent trace
which is active until gguntrace() is called on the method. Defaults to TRUE.

use_names Whether the trace dump should use the names from trace_exprs. If trace_exprs
is not specified, whether to use the method steps as names. Defaults to TRUE.

... Unused, for extensibility.

print_output Whether to print() the output of each expression to the console. Defaults to
TRUE.

verbose Whether logs should be printed when trace is triggered. Encompasses print_output,
meaning that verbose = FALSE also triggers the effect of print_output = FALSE
by consequence. Defaults to FALSE.

Details

ggtrace() is a wrapper around base::trace() which is called on the ggproto method. It calls
base::untrace() on itself on exit by default, to make its effect ephemeral like base::debugonce().
A major feature is the ability to pass multiple positions and expressions to trace_steps and
trace_exprs to inspect, capture, and modify the run time environment of ggproto methods. It
is recommended to consult the output of ggbody() when deciding which expressions to evaluate at
which steps.

The output of the expressions passed to trace_exprs is printed while tracing takes place. The list of
outputs from ggtrace() ("trace dumps") can be returned for further inspection with last_ggtrace()
or global_ggtrace().

Workflows

Broadly, there are four flavors of working with the {ggtrace} package, listed in the order of in-
creasing complexity:

• Inspect: The canonical use of ggtrace() to make queries, where expressions are passed in
and their evaluated output are returned, potentially for further inspection.

• Capture: The strategy of returning the method’s runtime environment for more complex ex-
plorations outside of the debugging context. A method’s environment contextualizes the self
object in addition to making all inherited params and local variables available.
A reference to the method’s runtime environment can be returned with environment(), as in
trace_exprs = quote(environment()). Note that environments are mutable, meaning that

ggtrace 9

environment() returned from the first and last steps will reference the same environment.
To get a snapshot of the environment at a particular step, you can return a deep copy with
rlang::env_clone(environment()).

• Inject: The strategy of modifying the behavior of a method as it runs by passing in expressions
that make assignments.
For example, trace_steps = c(1, 10) with trace_exprs = rlang::exprs(a <- 5, a) will
first assign a new variable a at step 1, and return its value 5 at step 10. This can also be used to
modify important variables like quote(data$x <- data$x * 10). If you would like to inject
an object from the global environment, you can make use of the !! (bang-bang) operator from
{rlang}, like so: rlang::expr(data <- !!modified_data).
Note that the execution environment is created anew each time the method is ran, so modifying
the environment from its previous execution will not affect future calls to the method.
If you would like to capture the modified plot output and assign it to a variable, you can do so
with ggplotGrob(). You can then render the modified plot with print().

• Edit: It is also possible to make any arbitrary modifications to the method’s source code,
which stays in effect until the method is untraced. While this is also handled with base::trace(),
this workflow is fundamentally interactive. Therefore, it has been refactored as its own func-
tion ggedit(). See ?ggedit for more details.

Gotchas

• If you wrap a ggplot in invisible() to silence ggtrace(), the plot will not build, which also
means that the tracing is not triggered. This is because the print/plot method of ggplot is what
triggers the evaluation of the plot code. It is recommended to allow ggtrace() to print infor-
mation, but if you’d really like to silence it, you can do so by wrapping the plot in a function
that forces its evaluation first, like ggplotGrob, as in invisible(ggplotGrob(<plot>)).

• If for any reason ggtrace(once = TRUE) fails to untrace itself on exit, you may accidentally
trigger the trace again. To check if a method is being traced, call is_traced(). You can also
always call gguntrace() since unlike base::untrace(), it will not error if a trace doesn’t
exist on the method. Instead, gguntrace() will do nothing in that case and simply inform
you that there is no trace to remove.

• Because base::trace() wraps the method body in a special environment, it is not possible to
inspect the method/function which called it, even with something like rlang::caller_env().
You will traverse through a few wrapping environments created by base::trace() which
eventually ends up looping around.

Messages

Various information is sent to the console whenever a trace is triggered. You can control what
gets displayed with print_output and verbose, which are both TRUE by default. print_output
simply calls print() on the evaluated expressions, and turning this off may be desirable if ex-
pressions in trace_exprs evaluates to a long dataframe or vector. verbose controls all informa-
tion printed to the console including those by print(), and setting verbose = FALSE will mean
that only message()s will be displayed. Lastly, you can suppress message() from ggtrace()
with options(ggtrace.suppressMessages = TRUE), though suppressing messages is generally
not recommended.

10 ggtrace

See Also

gguntrace(), is_traced(), last_ggtrace(), global_ggtrace()

Examples

One example of an Inspect workflow ----

library(ggplot2)

jitter_plot <- ggplot(diamonds[1:1000,], aes(cut, depth)) +
geom_point(position = position_jitter(width = 0.2, seed = 2021))

jitter_plot

ggbody(PositionJitter$compute_layer)

Step 1 ====
Inspect what `data` look like at the start of the function
ggtrace(PositionJitter$compute_layer, trace_steps = 1, trace_exprs = quote(head(data)))

jitter_plot

Step 2 ====
What does `data` look like at the end of the method? Unfortunately, `trace()` only lets us enter
at the beginning of a step, so we can't inspect what happens after the last step is evaluated. To
address this, `ggtrace()` offers a `~step` keyword which gets substituted for the current line.
We also set `print_output = FALSE` to disable printing of the output
ggtrace(

PositionJitter$compute_layer,
trace_steps = 14,
trace_exprs = quote(~step), # This is the default if `trace_exprs` is not provided
print_output = FALSE

)

We wrap the plot in `ggplotGrob()` and `invisible()` to force
its evaluation while suppressing its rendering
invisible(ggplotGrob(jitter_plot))

The output of the evaluated expressions can be inspected with `last_ggtrace()`
head(last_ggtrace()[[1]])

Step 3 ====
If we want both to be returned at the same time for an easier comparison, we can pass in a
(named) list of expressions.
ggtrace(

PositionJitter$compute_layer,
trace_steps = c(1, 14),
trace_exprs = rlang::exprs(
before_jitter = data,
after_jitter = ~step

),
verbose = FALSE

ggtrace_capture_env 11

)

invisible(ggplotGrob(jitter_plot))

Step 4 ====
The output of the evaluated expressions can be inspected with `last_ggtrace()`
jitter_tracedump <- last_ggtrace()

lapply(jitter_tracedump, head, 3)

jitter_distances <- jitter_tracedump[["before_jitter"]]$x -
jitter_tracedump[["after_jitter"]]$x

range(jitter_distances)
jitter_plot$layers[[1]]$position$width

ggtrace_capture_env Capture a snapshot of a method’s execution environment

Description

Capture a snapshot of a method’s execution environment

Usage

ggtrace_capture_env(x, method, cond = 1L, at = -1L, ...)

capture_env(x, method, cond = 1L, at = -1L, ...)

Arguments

x A ggplot object

method A function or a ggproto method. The ggproto method may be specified using
any of the following forms:

• ggproto$method

• namespace::ggproto$method

• namespace:::ggproto$method

cond When the method environment should be captured. Defaults to 1L.

at Which step of the method body the environment should be captured. See ggbody()
for a list of expressions/steps in the method body.

... Unused.

Value

An environment

12 ggtrace_capture_env

Tracing context

When quoted expressions are passed to the cond or value argument of workflow functions they are
evaluated in a special environment which we call the "tracing context".

The tracing context is "data-masked" (see rlang::eval_tidy()), and exposes an internal variable
called ._counter_ which increments every time a function/method has been called by the ggplot
object supplied to the x argument of workflow functions. For example, cond = quote(._counter_
== 1L) is evaluated as TRUE when the method is called for the first time. The cond argument
also supports numeric shorthands like cond = 1L which evaluates to quote(._counter_ == 1L),
and this is the default value of cond for all workflow functions that only return one value (e.g.,
ggtrace_capture_fn()). It is recommended to consult the output of ggtrace_inspect_n() and
ggtrace_inspect_which() to construct expressions that condition on ._counter_.

For highjack functions like ggtrace_highjack_return(), the value about to be returned by the
function/method can be accessed with returnValue() in the value argument. By default, value is
set to quote(returnValue()) which simply evaluates to the return value, but directly computing
on returnValue() to derive a different return value for the function/method is also possible.

Examples

library(ggplot2)

Example from https://ggplot2.tidyverse.org/reference/aes_eval.html
after_scale_plot <- ggplot(mpg, aes(class, hwy)) +

geom_boxplot(aes(colour = class, fill = after_scale(alpha(colour, 0.4))))
after_scale_plot

`after_scale()` is resolved by `Geom$use_defaults` (at Step 6)

before_applying <- ggtrace_capture_env(
x = after_scale_plot,
method = Geom$use_defaults,
at = 1 # To be more specific, do `at = 6`

)
after_applying <- ggtrace_capture_env(

x = after_scale_plot,
method = Geom$use_defaults,
at = -1 # To be more specific, do `at = 7`

)

colnames(before_applying$data)
colnames(after_applying$data)

library(dplyr)

before_applying$data %>%
select(any_of(c("colour", "fill")))

after_applying$data %>%
select(any_of(c("colour", "fill")))

identical(
before_applying$data %>%

ggtrace_capture_fn 13

select(any_of(c("colour", "fill"))) %>%
mutate(fill = alpha(colour, 0.4)), #< after_scale() logic here

after_applying$data %>%
select(any_of(c("colour", "fill")))

)

Using the captured environment for further evaluation
ggbody(Geom$draw_panel)

by_group_drawing_code <- rlang::call_args(ggbody(Geom$draw_panel)[[3]])[[2]]
by_group_drawing_code

draw_panel_env <- ggtrace_capture_env(
x = after_scale_plot,
method = Geom$draw_panel

)
draw_panel_env

boxes <- eval(by_group_drawing_code, draw_panel_env)

library(grid)
grid.newpage()
grid.draw(editGrob(boxes[[1]], vp = viewport()))

ggtrace_capture_fn Capture a snapshot of a method as a pre-filled function

Description

Returns a ggproto method as a function with arguments pre-filled to their values when it was first
called

Usage

ggtrace_capture_fn(x, method, cond = 1L, ...)

capture_fn(x, method, cond = 1L, ...)

Arguments

x A ggplot object
method A function or a ggproto method. The ggproto method may be specified using

any of the following forms:
• ggproto$method

• namespace::ggproto$method

• namespace:::ggproto$method

cond When the method function should be captured. Defaults to 1L.
... Unused.

14 ggtrace_capture_fn

Value

A function

Tracing context

When quoted expressions are passed to the cond or value argument of workflow functions they are
evaluated in a special environment which we call the "tracing context".

The tracing context is "data-masked" (see rlang::eval_tidy()), and exposes an internal variable
called ._counter_ which increments every time a function/method has been called by the ggplot
object supplied to the x argument of workflow functions. For example, cond = quote(._counter_
== 1L) is evaluated as TRUE when the method is called for the first time. The cond argument
also supports numeric shorthands like cond = 1L which evaluates to quote(._counter_ == 1L),
and this is the default value of cond for all workflow functions that only return one value (e.g.,
ggtrace_capture_fn()). It is recommended to consult the output of ggtrace_inspect_n() and
ggtrace_inspect_which() to construct expressions that condition on ._counter_.

For highjack functions like ggtrace_highjack_return(), the value about to be returned by the
function/method can be accessed with returnValue() in the value argument. By default, value is
set to quote(returnValue()) which simply evaluates to the return value, but directly computing
on returnValue() to derive a different return value for the function/method is also possible.

Note

For functions and methods that take ..., arguments passed to ... are captured and promoted to
function arguments. The captured values are available for inspection via formals().

Examples

library(ggplot2)

set.seed(47)
df <- as.data.frame(matrix(sample(5, 1000, TRUE), ncol = 2))
table(df)

base <- ggplot(df, aes(x = V1, y = V2))

p1 <- base + stat_summary(orientation = "x")
p1

p1_compute_panel <- ggtrace_capture_fn(p1, method = StatSummary$compute_panel)

`p1_compute_panel` is a copy of the ggproto method
body(p1_compute_panel)
ggbody(StatSummary$compute_panel, as.list = FALSE)

Its arguments are pre-filled (captured at runtime)
sapply(formals(p1_compute_panel), class)

Runs as it should
p1_compute_panel()

ggtrace_highjack_args 15

You can inspect changes to its behavior outisde of ggplot
For example, see what happens when aes is flipped via `orientation = "y"`
p1_compute_panel(flipped_aes = TRUE)

We confirm this output to be true when `orientation = "y"` in `stat_summary()`
p2 <- base + stat_summary(orientation = "y")
p2_compute_panel <- ggtrace_capture_fn(p2, method = StatSummary$compute_panel)

identical(p1_compute_panel(flipped_aes = TRUE), p2_compute_panel())

You can interactively explore with `debugonce(p2_compute_panel)`

Note that the captured method looks slightly different if the method takes `...`
p3 <- base + stat_smooth() + geom_jitter()
p3

p3_compute_panel <- ggtrace_capture_fn(p3, method = Stat$compute_panel)

For one, the body is different - it's a "wrapper" around the captured method
body(p3_compute_panel)

The captured method is stored in the `"inner"` attribute
attr(p3_compute_panel, "inner")

Captured argument defaults are again available for inspection via `formals()`
Note that arguments passed to the `...` are promoted to function arguments
names(ggformals(Stat$compute_panel))
names(formals(p3_compute_panel))

It works the same otherwise - plus you get the benefit of autocomplete
head(p3_compute_panel())
head(p3_compute_panel(level = .99)[, c("ymin", "ymax")])
head(p3_compute_panel(flipped_aes = TRUE))

Interactively explore with `debugonce(attr(p3_compute_panel, "inner"))`

ggtrace_highjack_args Highjack a method’s execution and modify its argument values

Description

Highjack a method’s execution and modify its argument values

Usage

ggtrace_highjack_args(x, method, cond = 1L, values, ..., draw = TRUE)

highjack_args(x, method, cond = 1L, values, ..., draw = TRUE)

16 ggtrace_highjack_args

Arguments

x A ggplot object

method A function or a ggproto method. The ggproto method may be specified using
any of the following forms:

• ggproto$method

• namespace::ggproto$method

• namespace:::ggproto$method

cond When the return value should be replaced. Defaults to 1L.

values A named list of variable-value pairings. When values are expressions, they are
evaluated in the formals.

... Unused.

draw Whether to draw the modified graphical output from evaluating x. Defaults to
TRUE.

Value

A gtable object with class <ggtrace_highjacked>

Tracing context

When quoted expressions are passed to the cond or value argument of workflow functions they are
evaluated in a special environment which we call the "tracing context".

The tracing context is "data-masked" (see rlang::eval_tidy()), and exposes an internal variable
called ._counter_ which increments every time a function/method has been called by the ggplot
object supplied to the x argument of workflow functions. For example, cond = quote(._counter_
== 1L) is evaluated as TRUE when the method is called for the first time. The cond argument
also supports numeric shorthands like cond = 1L which evaluates to quote(._counter_ == 1L),
and this is the default value of cond for all workflow functions that only return one value (e.g.,
ggtrace_capture_fn()). It is recommended to consult the output of ggtrace_inspect_n() and
ggtrace_inspect_which() to construct expressions that condition on ._counter_.

For highjack functions like ggtrace_highjack_return(), the value about to be returned by the
function/method can be accessed with returnValue() in the value argument. By default, value is
set to quote(returnValue()) which simply evaluates to the return value, but directly computing
on returnValue() to derive a different return value for the function/method is also possible.

Examples

set.seed(1116)
library(ggplot2)
library(dplyr)

p <- ggplot(mtcars, aes(mpg, hp, color = factor(cyl))) +
geom_point() +
geom_smooth(method = "lm")

p

ggtrace_highjack_return 17

Fit predictions from loess regression just for second group
ggtrace_highjack_args(

x = p,
method = StatSmooth$compute_group,
cond = quote(data$group[1] == 2),
values = list(method = "loess")

)

If value is an expression, it's evaluated in the Tracing Context
ggtrace_highjack_args(

x = p,
method = StatSmooth$compute_group,
values = rlang::exprs(

Every time the method is called, call it with a bigger CI
level = ._counter_ * 0.3,

Fit models to just a random sample of the data
data = data %>%

slice_sample(prop = .8)

)
)

ggtrace_highjack_return

Highjack a method’s execution and make it return a user-supplied
value

Description

Highjack a method’s execution and make it return a user-supplied value

Usage

ggtrace_highjack_return(
x,
method,
cond = 1L,
value = quote(returnValue()),
...,
draw = TRUE

)

highjack_return(
x,
method,

18 ggtrace_highjack_return

cond = 1L,
value = quote(returnValue()),
...,
draw = TRUE

)

Arguments

x A ggplot object

method A function or a ggproto method. The ggproto method may be specified using
any of the following forms:

• ggproto$method

• namespace::ggproto$method

• namespace:::ggproto$method

cond When the return value should be replaced. Defaults to 1L.

value What the method should return instead. Defaults to quote(returnValue()).

... Unused.

draw Whether to draw the modified graphical output from evaluating x. Defaults to
TRUE.

Value

A gtable object with class <ggtrace_highjacked>

Tracing context

When quoted expressions are passed to the cond or value argument of workflow functions they are
evaluated in a special environment which we call the "tracing context".

The tracing context is "data-masked" (see rlang::eval_tidy()), and exposes an internal variable
called ._counter_ which increments every time a function/method has been called by the ggplot
object supplied to the x argument of workflow functions. For example, cond = quote(._counter_
== 1L) is evaluated as TRUE when the method is called for the first time. The cond argument
also supports numeric shorthands like cond = 1L which evaluates to quote(._counter_ == 1L),
and this is the default value of cond for all workflow functions that only return one value (e.g.,
ggtrace_capture_fn()). It is recommended to consult the output of ggtrace_inspect_n() and
ggtrace_inspect_which() to construct expressions that condition on ._counter_.

For highjack functions like ggtrace_highjack_return(), the value about to be returned by the
function/method can be accessed with returnValue() in the value argument. By default, value is
set to quote(returnValue()) which simply evaluates to the return value, but directly computing
on returnValue() to derive a different return value for the function/method is also possible.

Examples

set.seed(1116)
library(ggplot2)
library(dplyr)

ggtrace_inspect_args 19

p1 <- ggplot(diamonds, aes(cut)) +
geom_bar(aes(fill = cut)) +
facet_wrap(~ clarity)

p1

Highjack `Stat$compute_panel` at the first panel
to return higher values for `count`
ggtrace_highjack_return(

x = p1, method = Stat$compute_panel,
value = quote({
returnValue() %>%

mutate(count = count * 100)
})

)

Highjack `Stat$compute_panel` at the fourth panel
to shuffle bars in the x-axis
ggtrace_highjack_return(

x = p1, method = Stat$compute_panel,
cond = quote(data$PANEL[1] == 4),
value = quote({
returnValue() %>%

mutate(x = sample(x))
})

)

Bars get a black outline and get darker from left-to-right, but only for second panel
ggtrace_highjack_return(

x = p1, method = GeomBar$draw_panel,
cond = quote(data$PANEL[1] == 2),
value = quote({
editGrob(returnValue(), gp = gpar(

col = "black", alpha = seq(0.2, 1, length.out = nrow(data)
)))

})
)

ggtrace_inspect_args Inspect the arguments passed into a method

Description

Inspect the arguments passed into a method

Usage

ggtrace_inspect_args(

20 ggtrace_inspect_args

x,
method,
cond = 1L,
hoist_dots = TRUE,
...,
error = FALSE

)

inspect_args(x, method, cond = 1L, hoist_dots = TRUE, ..., error = FALSE)

Arguments

x A ggplot object

method A function or a ggproto method. The ggproto method may be specified using
any of the following forms:

• ggproto$method

• namespace::ggproto$method

• namespace:::ggproto$method

cond When the arguments should be inspected. Defaults to 1L.

hoist_dots Whether treat arguments passed to ... like regular arguments. If FALSE, the ...
is treated as an argument

... Unused.

error If TRUE, continues inspecting the method until the ggplot errors. This is useful
for debugging but note that it can sometimes return incomplete output.

Value

A list of argument-value pairs from the method when it is called.

Tracing context

When quoted expressions are passed to the cond or value argument of workflow functions they are
evaluated in a special environment which we call the "tracing context".

The tracing context is "data-masked" (see rlang::eval_tidy()), and exposes an internal variable
called ._counter_ which increments every time a function/method has been called by the ggplot
object supplied to the x argument of workflow functions. For example, cond = quote(._counter_
== 1L) is evaluated as TRUE when the method is called for the first time. The cond argument
also supports numeric shorthands like cond = 1L which evaluates to quote(._counter_ == 1L),
and this is the default value of cond for all workflow functions that only return one value (e.g.,
ggtrace_capture_fn()). It is recommended to consult the output of ggtrace_inspect_n() and
ggtrace_inspect_which() to construct expressions that condition on ._counter_.

For highjack functions like ggtrace_highjack_return(), the value about to be returned by the
function/method can be accessed with returnValue() in the value argument. By default, value is
set to quote(returnValue()) which simply evaluates to the return value, but directly computing
on returnValue() to derive a different return value for the function/method is also possible.

ggtrace_inspect_n 21

Examples

library(ggplot2)

p1 <- ggplot(diamonds, aes(cut)) +
geom_bar(aes(fill = cut)) +
facet_wrap(~ clarity)

p1

Argument value of `Stat$compute_panel` for the first panel
compute_panel_args_1 <- ggtrace_inspect_args(x = p1, method = Stat$compute_panel)
names(ggformals(Stat$compute_panel))
names(compute_panel_args_1)
table(compute_panel_args_1$data$fill)

`hoist_dots` preserves information about which arguments were passed to `...`
with_dots <- ggtrace_inspect_args(p1, Stat$compute_panel, hoist_dots = FALSE)
names(with_dots)
with_dots$`...`

ggtrace_inspect_n Inspect how many times a method was called

Description

Inspect how many times a method was called

Usage

ggtrace_inspect_n(x, method, ..., error = FALSE)

inspect_n(x, method, ..., error = FALSE)

Arguments

x A ggplot object

method A function or a ggproto method. The ggproto method may be specified using
any of the following forms:

• ggproto$method

• namespace::ggproto$method

• namespace:::ggproto$method

... Unused.

error If TRUE, continues inspecting the method until the ggplot errors. This is useful
for debugging but note that it can sometimes return incomplete output.

22 ggtrace_inspect_on_error

Value

The number of times method was called in the evaluation of x

Examples

library(ggplot2)

p1 <- ggplot(diamonds, aes(cut)) +
geom_bar(aes(fill = cut)) +
facet_wrap(~ clarity)

p1

1 call to Stat$compute_layer
ggtrace_inspect_n(p1, Stat$compute_layer)

8 calls to Stat$compute_panel
ggtrace_inspect_n(p1, Stat$compute_panel)

Note that there are 0 calls to Stat$compute_group ...
ggtrace_inspect_n(p1, Stat$compute_group)

because StatCount has its own "compute_group" method defined
ggtrace_inspect_n(p1, StatCount$compute_group)

How about if we add a second layer that uses StatCount?
p2 <- p1 + geom_text(

aes(label = after_stat(count)),
stat = StatCount, position = position_nudge(y = 500)

)

p2

Now there are double the calls to Stat/StatCount methods
ggtrace_inspect_n(p2, Stat$compute_layer)
ggtrace_inspect_n(p2, Stat$compute_panel)
ggtrace_inspect_n(p2, StatCount$compute_group)

But separate calls to each layer's respective Geoms
ggtrace_inspect_n(p2, GeomBar$draw_panel)
ggtrace_inspect_n(p2, GeomText$draw_panel)

ggtrace_inspect_on_error

Get information about a ggproto method on error

Description

Get information about a ggproto method on error

ggtrace_inspect_return 23

Usage

ggtrace_inspect_on_error(x, method, ...)

inspect_on_error(x, method, ...)

Arguments

x A ggplot object

method A function or a ggproto method. The ggproto method may be specified using
any of the following forms:

• ggproto$method

• namespace::ggproto$method

• namespace:::ggproto$method

... Unused.

Value

A list of three elements: counter, args, and env.

Examples

library(ggplot2)
erroring_barplot <- ggplot(mtcars, aes(mpg, hp)) +

stat_summary() +
geom_bar()

ggtrace_inspect_on_error(erroring_barplot, StatCount$setup_params)
ggtrace_inspect_on_error(erroring_barplot, ggplot2:::Layer$compute_statistic)

ggtrace_inspect_return

Inspect the return value of a method

Description

Inspect the return value of a method

Usage

ggtrace_inspect_return(x, method, cond = 1L, ..., error = FALSE)

inspect_return(x, method, cond = 1L, ..., error = FALSE)

24 ggtrace_inspect_return

Arguments

x A ggplot object

method A function or a ggproto method. The ggproto method may be specified using
any of the following forms:

• ggproto$method

• namespace::ggproto$method

• namespace:::ggproto$method

cond When the return value should be inspected. Defaults to 1L.

... Unused.

error If TRUE, continues inspecting the method until the ggplot errors. This is useful
for debugging but note that it can sometimes return incomplete output.

Value

The return value from method when it is called.

Tracing context

When quoted expressions are passed to the cond or value argument of workflow functions they are
evaluated in a special environment which we call the "tracing context".

The tracing context is "data-masked" (see rlang::eval_tidy()), and exposes an internal variable
called ._counter_ which increments every time a function/method has been called by the ggplot
object supplied to the x argument of workflow functions. For example, cond = quote(._counter_
== 1L) is evaluated as TRUE when the method is called for the first time. The cond argument
also supports numeric shorthands like cond = 1L which evaluates to quote(._counter_ == 1L),
and this is the default value of cond for all workflow functions that only return one value (e.g.,
ggtrace_capture_fn()). It is recommended to consult the output of ggtrace_inspect_n() and
ggtrace_inspect_which() to construct expressions that condition on ._counter_.

For highjack functions like ggtrace_highjack_return(), the value about to be returned by the
function/method can be accessed with returnValue() in the value argument. By default, value is
set to quote(returnValue()) which simply evaluates to the return value, but directly computing
on returnValue() to derive a different return value for the function/method is also possible.

Examples

library(ggplot2)

p1 <- ggplot(diamonds, aes(cut)) +
geom_bar(aes(fill = cut)) +
facet_wrap(~ clarity)

p1

Return value of `Stat$compute_panel` for the first panel
ggtrace_inspect_return(x = p1, method = Stat$compute_panel)

Return value for 4th panel

ggtrace_inspect_vars 25

ggtrace_inspect_return(x = p1, method = Stat$compute_panel,
cond = 4L)

Return value for 4th panel, 2nd group (bar)
ggtrace_inspect_return(

x = p1, method = StatCount$compute_group,
cond = quote(data$PANEL[1] == 4 && data$group[1] == 2)

)

ggtrace_inspect_vars Inspect the value of variables from a method

Description

Inspect the value of variables from a method

Usage

ggtrace_inspect_vars(
x,
method,
cond = 1L,
at = "all",
vars,
by_var = TRUE,
...,
error = FALSE

)

inspect_vars(
x,
method,
cond = 1L,
at = "all",
vars,
by_var = TRUE,
...,
error = FALSE

)

Arguments

x A ggplot object

method A function or a ggproto method. The ggproto method may be specified using
any of the following forms:

• ggproto$method

26 ggtrace_inspect_vars

• namespace::ggproto$method

• namespace:::ggproto$method

cond When the return value should be inspected. Defaults to 1L.

at Which steps in the method body the values of vars should be retrieved. Defaults
to a special value all which is evaluated to all steps in the method body.

vars A character vector of variable names

by_var Boolean that controls the format of the output:

• TRUE (default): returns a list of variables, with their values at each step. This
also drops steps within a variable where the variable value has not changed
from a previous step specified by at.

• FALSE: returns a list of steps, where each element holds the value of vars
at each step of at. Unchanged variable values are not dropped.

... Unused.

error If TRUE, continues inspecting the method until the ggplot errors. This is useful
for debugging but note that it can sometimes return incomplete output.

Value

A list of values of vars at each step at. Simplifies if vars and/or at is length-1.

Tracing context

When quoted expressions are passed to the cond or value argument of workflow functions they are
evaluated in a special environment which we call the "tracing context".

The tracing context is "data-masked" (see rlang::eval_tidy()), and exposes an internal variable
called ._counter_ which increments every time a function/method has been called by the ggplot
object supplied to the x argument of workflow functions. For example, cond = quote(._counter_
== 1L) is evaluated as TRUE when the method is called for the first time. The cond argument
also supports numeric shorthands like cond = 1L which evaluates to quote(._counter_ == 1L),
and this is the default value of cond for all workflow functions that only return one value (e.g.,
ggtrace_capture_fn()). It is recommended to consult the output of ggtrace_inspect_n() and
ggtrace_inspect_which() to construct expressions that condition on ._counter_.

For highjack functions like ggtrace_highjack_return(), the value about to be returned by the
function/method can be accessed with returnValue() in the value argument. By default, value is
set to quote(returnValue()) which simply evaluates to the return value, but directly computing
on returnValue() to derive a different return value for the function/method is also possible.

Examples

library(ggplot2)

p1 <- ggplot(mtcars[1:10,], aes(mpg, hp)) +
geom_smooth()

p1

The `data` variable is bound to two unique values in `compute_group` method:
ggtrace_inspect_vars(p1, StatSmooth$compute_group, vars = "data")

ggtrace_inspect_which 27

Note that elements of this list capture the method's state upon entering a step,
so "Step1" and "Step5" should be interpreted as the value of `data` at the start
the method's execution (before "Step1") and its value as a result of running Step4
(before "Step5"). Indeed, we see that the `weight` column is defined in Step4, so
the data is flagged as changed at the start of Step5
ggbody(StatSmooth$compute_group)[[4]]

Comparing the "Steps" themselves can be useful
p2 <- p1 +

scale_x_continuous(trans = "log") +
scale_y_continuous(trans = "log")

p2

Comparing the original plot to one with log-transformed scales reveals a change
in data detected at the beginning of Step 14
names(ggtrace_inspect_vars(p1, ggplot2:::ggplot_build.ggplot, vars = "data"))
names(ggtrace_inspect_vars(p2, ggplot2:::ggplot_build.ggplot, vars = "data"))

We can pinpoint the calculation of scale transformations to Step 13:
ggbody(ggplot2:::ggplot_build.ggplot)[[13]]

With `by_vars = FALSE`, elements of the returned list are steps instead of values.
Note that this does not drop unchanged values:
ggtrace_inspect_vars(p1, StatSmooth$compute_group, vars = "data", at = 1:6, by_var = FALSE)

ggtrace_inspect_which Inspect which calls to a ggproto method met a particular condition

Description

Inspect which calls to a ggproto method met a particular condition

Usage

ggtrace_inspect_which(x, method, cond, ..., error = FALSE)

inspect_which(x, method, cond, ..., error = FALSE)

Arguments

x A ggplot object

method A function or a ggproto method. The ggproto method may be specified using
any of the following forms:

• ggproto$method

28 ggtrace_inspect_which

• namespace::ggproto$method

• namespace:::ggproto$method

cond Expression evaluating to a logical inside method when x is evaluated.

... Unused.

error If TRUE, continues inspecting the method until the ggplot errors. This is useful
for debugging but note that it can sometimes return incomplete output.

Value

The values of the tracing context variable ._counter_ when cond is evaluated as TRUE.

Tracing context

When quoted expressions are passed to the cond or value argument of workflow functions they are
evaluated in a special environment which we call the "tracing context".

The tracing context is "data-masked" (see rlang::eval_tidy()), and exposes an internal variable
called ._counter_ which increments every time a function/method has been called by the ggplot
object supplied to the x argument of workflow functions. For example, cond = quote(._counter_
== 1L) is evaluated as TRUE when the method is called for the first time. The cond argument
also supports numeric shorthands like cond = 1L which evaluates to quote(._counter_ == 1L),
and this is the default value of cond for all workflow functions that only return one value (e.g.,
ggtrace_capture_fn()). It is recommended to consult the output of ggtrace_inspect_n() and
ggtrace_inspect_which() to construct expressions that condition on ._counter_.

For highjack functions like ggtrace_highjack_return(), the value about to be returned by the
function/method can be accessed with returnValue() in the value argument. By default, value is
set to quote(returnValue()) which simply evaluates to the return value, but directly computing
on returnValue() to derive a different return value for the function/method is also possible.

Examples

library(ggplot2)

p1 <- ggplot(diamonds, aes(cut)) +
geom_bar(aes(fill = cut)) +
facet_wrap(~ clarity)

p1

Values of `._counter_` when `compute_group` is called for groups in the second panel:
ggtrace_inspect_which(p1, StatCount$compute_group, quote(data$PANEL[1] == 2))

How about if we add a second layer that uses StatCount?
p2 <- p1 + geom_text(

aes(label = after_stat(count)),
stat = StatCount, position = position_nudge(y = 500)

)
p2

gguntrace 29

ggtrace_inspect_which(p2, StatCount$compute_group, quote(data$PANEL[1] == 2))

Behaves like `base::which()` and returns `integer(0)` when no matches are found
ggtrace_inspect_which(p2, StatBoxplot$compute_group, quote(data$PANEL[1] == 2))

gguntrace Remove any existing traces

Description

Used for explicitly calling untrace() on a ggproto object.

Usage

gguntrace(method, ...)

Arguments

method A function or a ggproto method. The ggproto method may be specified using
any of the following forms:

• ggproto$method

• namespace::ggproto$method

• namespace:::ggproto$method

... Ignored. Designed for the ease of calling this function by modifying the call to
an earlier {ggtrace} function in interactive contexts.

Details

Unlike base::untrace(), there is no adverse side effect to repeatedly calling gguntrace() on a
ggproto method. gguntrace() will only throw an error if the method cannot be found.

If the method is valid, gguntrace() will do one of two things:

• Inform that it has successfully removed the trace (after untracing)

• Inform that the there isn’t an existing trace (after doing nothing)

See Also

ggtrace(), ggedit()

30 is_traced

Examples

library(ggplot2)

gguntrace(Stat$compute_layer)

is_traced(Stat$compute_layer)

ggtrace(Stat$compute_layer, 1)

is_traced(Stat$compute_layer)

gguntrace(Stat$compute_layer)

is_traced(Stat$compute_layer)

gguntrace(Stat$compute_layer)

is_traced Check if a method is being traced

Description

Check if a method is being traced

Usage

is_traced(method)

Arguments

method A function or a ggproto method. The ggproto method may be specified using
any of the following forms:

• ggproto$method

• namespace::ggproto$method

• namespace:::ggproto$method

Value

logical

Examples

library(ggplot2)

gguntrace(Stat$compute_layer)

is_traced(Stat$compute_layer)

last_layer_errorcontext 31

ggtrace(Stat$compute_layer, 1)

is_traced(Stat$compute_layer)

gguntrace(Stat$compute_layer)

is_traced(Stat$compute_layer)

gguntrace(Stat$compute_layer)

last_layer_errorcontext

Get the internal context of the last (sub-)layer error

Description

• last_layer_errorcontext() returns the error context at the level of the Layer ggproto.

• last_sublayer_errorcontext() (EXPERIMENTAL) returns the error context at the sub-
Layer level (e.g., Stat or Geom).

Usage

last_layer_errorcontext(reprint_error = FALSE, ggtrace_notes = TRUE)

last_sublayer_errorcontext(reprint_error = FALSE, ggtrace_notes = TRUE)

Arguments

reprint_error Re-prints the original error message to the console. Defaults to FALSE.

ggtrace_notes Prints the ggtrace_inspect_args() call used to inspect the error context. De-
faults to TRUE.

Value

An dynamically constructed and evaluated call to ggtrace_inspect_args(). Prioritizes showing
the state of layer data whenever possible (by extracting the data argument).

Scope

These functions can only retrieve information from errors propagating from Layer ggproto meth-
ods. In non-technical terms, they only work for errors with a "Error occured in the Nth layer"
message (as of {ggplot2} >= 3.4.0).

The scope of last_sublayer_errorcontext() is narrower, since not all Layer methods call a
sub-Layer method. This function is intended for developers - in most cases users can get all the
information necessary to debug layer code from last_layer_errorcontext() (there are only so
many ways to break a ggplot from user-facing code).

32 with_ggtrace

See Also

ggtrace_inspect_on_error()

Examples

Not run:
library(ggplot2)
erroring_barplot1 <- ggplot(mtcars, aes(mpg, hp)) +

stat_summary(fun.data = "mean_se") +
geom_bar()

Render to trigger error
erroring_barplot1

Both return the same snapshot of layer data
but at different levels of specificity
last_layer_errorcontext()
last_sublayer_errorcontext()

erroring_barplot2 <- ggplot(mtcars, aes(mpg, hp)) +
stat_summary() +
geom_bar(aes(y = c(1, 2)))

erroring_barplot2

This works:
last_layer_errorcontext()
This doesn't: there's no sub-layer ggproto involved in this error
last_sublayer_errorcontext()

library(ggforce)
erroring_sina <- ggplot(mtcars, aes(mpg)) +

geom_bar() +
geom_sina()

erroring_barplot1

The two return different snapshots of layer data here -
see `ggplot2:::Layer$compute_statistic` for why.
last_layer_errorcontext()
last_sublayer_errorcontext()

End(Not run)

with_ggtrace Generic workflow function which localizes a ggtrace call to a single
ggplot object

with_ggtrace 33

Description

with_ggtrace() provides a functional interface to ggtrace(). It takes a ggplot object and param-
eters passed to ggtrace() and returns the immediate tracedump and/or graphical output without
side effects.

Usage

with_ggtrace(x, method, ..., out = c("tracedump", "gtable", "both"))

Arguments

x A ggplot object whose evaluation triggers the trace as specified by the ...

method A function or a ggproto method. The ggproto method may be specified using
any of the following forms:

• ggproto$method

• namespace::ggproto$method

• namespace:::ggproto$method

... Arguments passed on to ggtrace

trace_steps A sorted numeric vector of positions in the method’s body to
trace. Negative indices reference steps from the last, where -1 references
the last step in the body. Special value "all" traces all steps of the method
body.

trace_exprs A list of expressions to evaluate at each position specified in
trace_steps. If a single expression is provided, it is recycled to match
the length of trace_steps.
To simply run a step and return its output, you can use the ~step keyword.
If the step is an assign expression, the value of the assigned variable is
returned. If trace_exprs is not provided, ggtrace() is called with ~step
by default.

once Whether to untrace() the method on exit. If FALSE, creates a persistent
trace which is active until gguntrace() is called on the method. Defaults
to TRUE.

use_names Whether the trace dump should use the names from trace_exprs.
If trace_exprs is not specified, whether to use the method steps as names.
Defaults to TRUE.

print_output Whether to print() the output of each expression to the con-
sole. Defaults to TRUE.

verbose Whether logs should be printed when trace is triggered. Encompasses
print_output, meaning that verbose = FALSE also triggers the effect of
print_output = FALSE by consequence. Defaults to FALSE.

out Whether the function should return the output of triggered traces ("tracedump"),
or the resulting graphical object from evaluating the ggplot ("gtable"), or "both",
which returns the tracedump but also renders the resulting plot as a side effect.
Partial matching is supported, so these options could also be specified as "t",
"g", or "b". Defaults to "tracedump".

34 with_ggtrace

Value

A list or gtable object of class <ggtrace_highjacked>

Note

To trigger evaluation of x, the function ggeval_silent(x) is called internally.

See Also

ggtrace(), ggeval_silent()

Examples

library(ggplot2)

Long-form `ggtrace()` method:
boxplot_plot <- ggplot(diamonds[1:500,], aes(cut, depth)) + geom_boxplot()
ggtrace(
method = StatBoxplot$compute_group,
trace_steps = -1, trace_exprs = quote(~step)

)
boxplot_plot
first_tracedump <- last_ggtrace()

Short-form functional `with_ggtrace()` method:
second_tracedump <- with_ggtrace(

x = boxplot_plot,
method = StatBoxplot$compute_group,
trace_steps = -1, trace_exprs = quote(~step)

)

identical(first_tracedump, second_tracedump)

An example with `out = "gtable"` (or `"g"`)
grid_plot <- ggplot(mtcars, aes(mpg, hp)) +

geom_point() +
facet_grid(am ~ cyl)

grid_plot

outline <- grid::rectGrob(
x = 0.5, y = 0.5, width = 1, height = 1,
gp = grid::gpar(col = "red", lwd = 5, fill = NA)

)

with_ggtrace(
x = grid_plot,
method = Layout$render,
trace_steps = 5,
trace_exprs = rlang::expr({
panels[c(3, 5)] <- lapply(panels[c(3, 5)], function(panel) {

gTree(children = gList(panel, !!outline))

with_ggtrace 35

})
}),
out = "gtable" # or "g"

)

With `once = FALSE` for persistent tracing (still cleaned up after)
lm_plot <- ggplot(mpg, aes(displ, hwy, color = drv)) +

geom_point() +
geom_smooth(method = "lm")

lm_plot

with_ggtrace(
x = lm_plot,
method = StatSmooth$compute_group,
trace_steps = c(1, 11),
trace_exprs = list(

group = quote(data$group[1]),
coef = quote(model$coef)

)
)

with_ggtrace(
x = lm_plot,
method = StatSmooth$compute_group,
trace_steps = 1,
trace_exprs = quote(method <- c("loess", "lm", "loess")[data$group[1]]),
out = "g" # or "gtable"

)

Index

capture_env (ggtrace_capture_env), 11
capture_fn (ggtrace_capture_fn), 13

get_method, 2
get_method_inheritance (get_method), 2
ggbody (get_method), 2
ggdebug, 5
ggdebugonce (ggdebug), 5
ggedit, 6
ggedit(), 29
ggeval_silent(), 34
ggformals (get_method), 2
ggtrace, 7, 33
ggtrace(), 29, 34
ggtrace_capture_env, 11
ggtrace_capture_fn, 13
ggtrace_highjack_args, 15
ggtrace_highjack_return, 17
ggtrace_inspect_args, 19
ggtrace_inspect_args(), 31
ggtrace_inspect_n, 21
ggtrace_inspect_on_error, 22
ggtrace_inspect_on_error(), 32
ggtrace_inspect_return, 23
ggtrace_inspect_vars, 25
ggtrace_inspect_which, 27
ggundebug (ggdebug), 5
gguntrace, 29
gguntrace(), 6, 10
global_ggtrace(), 10

highjack_args (ggtrace_highjack_args),
15

highjack_return
(ggtrace_highjack_return), 17

inspect_args (ggtrace_inspect_args), 19
inspect_n (ggtrace_inspect_n), 21
inspect_on_error

(ggtrace_inspect_on_error), 22

inspect_return
(ggtrace_inspect_return), 23

inspect_vars (ggtrace_inspect_vars), 25
inspect_which (ggtrace_inspect_which),

27
is_traced, 30
is_traced(), 6, 10

last_ggtrace(), 10
last_layer_errorcontext, 31
last_sublayer_errorcontext

(last_layer_errorcontext), 31

with_ggtrace, 32

36

	get_method
	ggdebug
	ggedit
	ggtrace
	ggtrace_capture_env
	ggtrace_capture_fn
	ggtrace_highjack_args
	ggtrace_highjack_return
	ggtrace_inspect_args
	ggtrace_inspect_n
	ggtrace_inspect_on_error
	ggtrace_inspect_return
	ggtrace_inspect_vars
	ggtrace_inspect_which
	gguntrace
	is_traced
	last_layer_errorcontext
	with_ggtrace
	Index

